Polynomial Method in Computer Graphics

The first method defines a circle with the second-order polynomial equation as shown in fig:

y2=r2-x2

Where x = the x coordinate 

y = the y coordinate

r = the circle radius

With the method, each x coordinate in the sector, from 90° to 45°, is found by stepping x from 0

to & each y coordinate is found by evaluating 2-x2  for each step of x.                         
 

Algorithm:

Step1: Set the initial variables 

r = circle radius

(h, k) = coordinates of circle 

center x=o

I= step size

xend=

Step2: Test to determine whether the entire circle has been scan-converted. If x >xend then stop.

Step 3: Compute y=

Step4: Plot the eight points found by symmetry concerning the center (h, k) at the current (x, y) coordinates.

Plot (x + h, y +k)    Plot (-x + h, -y + k) Plot (y + h, x + k)   

Plot (-y + h, -x + k) Plot (-y + h, x + k)  Plot (y + h, -x + k) 

Plot (-x + h, y + k) Plot (x + h, -y + k)

Step5: Increment x =x + i

Step6: Go to step (ii).